Поддержать команду Зеркала
Беларусы на войне
  1. «Сигнал российскому обществу, что война вряд ли закончится скоро». Эксперты о вчерашнем заявлении Путина по мирным переговорам
  2. Власти на три дня заблокировали часть беларусских сайтов для остального мира
  3. Во время досрочного голосования власти идут на рекорды по числу «выполнивших гражданский долг». К чему такая спешка — объясняют эксперты
  4. В Беларуси проходит основной день голосования на президентских выборах
  5. Беларусов все сложнее удивить, но эта цифра явно может — выяснили, сколько денег взяли из госбюджета на акции, где восхваляют Лукашенко
  6. Арина Соболенко проиграла в финале Australian Open и прервала впечатляющую победную серию. Рассказываем, как это было
  7. В Беларуси начались перебои в работе VPN
  8. Мы посчитали, сколько из кандидатов, бросивших вызов Лукашенко, избежали преследования потом. Попробуйте угадать число
  9. Лукашенко спросили, как можно назвать выборы «демократичными», когда его главные оппоненты в тюрьме или за границей. Что ответил политик
  10. Сколько на выборах получит Александр Лукашенко? Спросили экспертов, известных беларусов и искусственный интеллект
  11. «Умелая игра Лукашенко». Исследователи рассказали о настроениях беларусов (раскол сохраняется, но есть и поводы для оптимизма)


Аполлинария Филиппова,

В Университетском колледже Лондона начались заключительные клинические испытания вакцины от меланомы — наиболее грозной формы рака кожи. Это не вакцина в привычном смысле слова, она не будет вводиться здоровым пациентам для профилактики. Препарат предназначен для пациентов с онкологическими заболеваниями, но, как и в случае с любой вакциной, принцип его работы заключается в обеспечении появления иммунитета к определенному антигену, пишет «Новая газета Европа».

Изображение носит иллюстративный характер. Фото: freepik.com
Изображение носит иллюстративный характер. Фото: freepik.com

Над вакциной из РНК опухолевых клеток каждого пациента — участника исследования работают компании Moderna и Merck. С помощью методов генной инженерии препарат запрограммирован на то, чтобы иммунная система обнаружила раковые клетки и уничтожила их. Уже проведенное двухлетнее исследование, в ходе которого пациенты получали эту вакцину в комбинации с противоопухолевым препаратом, показало обнадеживающие результаты. Риск рецидива рака и летального исхода у таких онкопациентов снизился почти вдвое в сравнении с теми, кто получал препарат без вакцины.

Недавно исследователи объявили о начале третьей, заключительной фазы клинических испытаний, в которые предполагается включить более широкий круг пациентов — свыше тысячи человек с диагнозом «меланома».

Создатели вакцины надеются уже в 2025 году получить одобрение FDA.

В поисках агентов

Как именно работает прививка? В случае с инфекциями вакцина содержит агент — ослабленный патоген или его частицы, который вызывает заболевание в легкой форме и против которого иммунная система вырабатывает ответные меры, таким образом предупреждая развитие настоящего заболевания. Оказалось, против рака тоже можно создать биопрепарат, который будет стимулировать иммунную систему бороться с онкоклетками. Вопрос лишь в том, что может стать агентом.

В случае с раком найти его не так просто хотя бы потому, что рецепторный состав опухолевой клетки очень изменчив и не содержит стабильной мишени.

Следовательно, неясно, на что должна быть нацелена профилактическая вакцина.

К слову, две профилактические прививки от рака, которые сегодня существуют, на самом деле защищают не от рака как такового, а от инфекций, которые ассоциированы с развитием онкозаболевания. Это вакцина против ВПЧ (вирус папилломы человека), который приводит к развитию рака шейки матки, и вакцина против гепатита В, который ответствен за раковые заболевания печени.

Общих для всех опухолей маркеров, по которым можно было бы предсказать развитие онкологических заболеваний и которые могли бы стать мишенями для вакцины, не существует. Как не существует и прививок абсолютно от всех инфекций.

Но можно заставить иммунитет прицельно работать против определенных, в нашем случае — раковых клеток, когда они уже появились в организме. Такой препарат — терапевтическая вакцина — должен помочь иммунной системе распознать врага, остановить его наступление на организм и в идеале полностью его уничтожить. Вопрос, кто станет тем самым агентом, который может повлиять на иммунную систему, активизировать ее деятельность и следить, чтобы все шло как надо?

Все исследования как в прошлом, так и сейчас направлены на то, чтобы выбрать наиболее подходящего кандидата на эту роль.

Туберкулез против рака

Вполне ожидаемо, что первыми, на кого исследователи обратили внимание еще столетие назад, стали бактерии. В 1890 году хирург-онколог Вильям Коли в процессе лечения пациентов с рожистым воспалением кожи обнаружил, что введение токсинов стрептококка уменьшает размер опухоли. Так была создана самая первая вакцина от рака, в которую помимо стрептококка хирург добавил анаэробные энтеробактерии, что должно было усилить противораковый эффект. Эти микроорганизмы были чужаками для иммунной системы, которая тут же начинала их атаковать, а вместе с ними под удар попадали и опухолевые клетки.

Спустя несколько десятилетий подобный эффект описали другие исследователи — уже в отношении туберкулезной палочки. Данные о результатах вскрытия больных туберкулезом, проведенные Университетом Джонса Хопкинса, показали, что у тех практически не встречался рак: иммунные клетки, сражавшиеся с палочкой Коха, попутно воздействовали и на онкоклетки.

Но идея лечить рак с помощью бактерий не нашла понимания у врачей того времени. Существовал вполне конкретный риск заразить человека, имеющего онкологическое заболевание, еще и инфекцией. С того момента, когда английский сельский врач Эдвард Дженнер сделал самую первую прививку, введя ребенку содержимое оспенных пузырьков больных коров, чтобы защитить его от черной оспы, прошло 150 лет. В начале XX века уже были созданы прививки от бешенства и туберкулеза, но вводить возбудителей смертельно опасных болезней, чтобы победить другую столь же грозную болезнь, казалось слишком смелым решением. И лечение рака пошло по другому пути — развитию радио- и химиотерапии.

К этой идее — лечить онкологические заболевания бактериальными инъекциями — вернулись лишь в конце XX века. И снова в главной роли была туберкулезная палочка, точнее, бацилла Кальметта-Герена, известная всем как БЦЖ (Bacillus Calmette-Guerin), которую вводят новорожденным в первые часы жизни, чтобы защитить от туберкулеза.

Оказалось, что при введении БЦЖ больным раком мочевого пузыря рецидив этого заболевания существенно снижался и отмечался лишь в 20%, притом что в других случаях рак возвращался у 50% пациентов.

Несмотря на то, что при этом способе лечения встречались и осложнения в виде образования туберкулезных гранулем в печени, терапия была признана эффективной, в 1990 году была одобрена FDA и сейчас применяется во многих странах мира.

Вирусы-волшебники

В конце XIX века врачи описывали историю «волшебного исцеления». У женщины с лейкемией количество лейкоцитов — клеток, указывающих на злокачественный процесс, — снизилось в разы после того, как она перенесла респираторную вирусную инфекцию с высокой температурой, болью в горле и насморком, ломотой в мышцах и чувством усталости. Перенесенная ОРВИ фактически вызвала ремиссию и подарила пациентке дополнительные годы жизни.

Так родилась теория о том, что в опухолевые клетки могут проникать вирусы, паразитировать на них и препятствовать их росту. Находилось немало тому подтверждений. Например, после заражения вирусом дальневосточного энцефалита у мышей остановилось развитие саркомы. Были и некоторые обнадеживающие результаты после заражения вирусом гепатита В пациентов с лимфомой Ходжкина. Из 22 участников исследования 14 заразились гепатитом, но еще у 8 человек наблюдался иммунный ответ, а у четырех участников эксперимента опухоль уменьшилась в размерах. Случались и казусы. У пациента, у которого была диагностирована меланома с метастазами, рост опухоли вдруг остановился и на долгое время случилась ремиссия после того, как его укусила собака и ему сделали прививку от бешенства.

Эксперименты с разными вирусами продолжались до середины XX века, но видимых результатов не принесли. Ремиссии онкологических заболеваний хотя и случались, но были кратковременными, в большинстве случаев пациент заражался тем, что, по идее, должно было его излечить. И в итоге иммунная система переключалась на борьбу с «сопутствующей» инфекцией, оставляя онкоклетки без своего контроля.

С течением времени стало ясно, что «волшебными» свойствами обладают не все вирусы, но многие. Среди них адено- и герпесвирусы, полиовирусы, парвовирусы и некоторые другие. Все они, названные онколитическими, имеют удивительную специфику. С одной стороны, они оказывают токсическое воздействие на раковую клетку, повреждают ее, и в итоге она погибает. Другая их особенность — в том, что размножаться онколитические вирусы способны лишь в опухолевой клетке, не затрагивая здоровые. Попадая в опухоль, они образуют большое количество инфекционных вирусных частиц, что ведет к массовой гибели опухолевых клеток. И главное — происходит высвобождение молекулярных фрагментов и специфических антигенов, которые активизируют адаптивный противоопухолевый иммунный ответ, что ведет к апоптозу (гибели) онкоклетки.

Задача у исследователей была простая — научить вирус уничтожать определенные раковые клетки, не трогая здоровые. Решить ее смогли лишь с развитием методов генной инженерии в конце XX века, когда вирус удалось модифицировать таким образом, чтобы устранить его патогенность, то есть способность вызывать болезнь. Сейчас вирус используется и как «убийца» опухолевых клеток, и как носитель для терапевтических молекул: он интегрирует в организм специальные белки, которые блокируют определенные рецепторы на поверхности опухолевых клеток, таким образом показывая иммунной системе: вот он, враг, которого надо уничтожить.

Первая подобная вакцина была создана в 2005 году в Китае на основе сконструированного онколитического аденовируса и применяется для лечения рака пищевода, шеи и головы. Спустя десять лет появилась еще одна вакцина, основанная на модифицированном вирусе простого герпеса первого типа — этот вирус известен всем как лихорадка, которая нередко появляется на губах.

Ведутся подобные разработки и в России. Так, в январе этого года исследователи Научного центра трансляционной медицины Научно-технологического университета «Сириус» сообщили о разработке нового препарата на основе модифицированного вируса везикулярного стоматита (VSV), который не только уничтожает опухолевые клетки, но и стимулирует их вырабатывать большие количества белков IL-12 и GM-CSF. Это сигнальные молекулы, отвечающие за активизацию иммунитета и созревание дендритных клеток. Первые результаты исследований показали, что введение VSV мышам с меланомой на 40% замедляло рост опухоли. Возможно, нужно увеличить дозу вирусных частиц либо воздействовать сразу на обе сигнальные молекулы. Все это ученым предстоит выяснить в ближайшее время.

Найти и уничтожить

И все же вирусы и бактерии оставались для иммунной системы «иноагентами» — чужеродными элементами, которые могли запустить нежелательные инфекционные процессы. А нужен был свой среди чужих, и тогда исследователи обратились к собственным клеткам пациента.

— Все опухолевые клетки начинают свою жизнь как абсолютно нормальные и не выглядят для иммунитета чужеродными. Потому иммунная система и не сразу их уничтожает, — поясняет онколог Дмитрий (фамилию спикера мы не называем из соображений безопасности. — Прим. ред.). — В результате происходящих мутаций опухолевая клетка начинает продуцировать специфические белки-антигены, которых нет у здоровых клеток. Вот эти опухолевые антигены и являются важнейшей целью иммунотерапии рака. Для опухолевых клеток важно спрятаться от собственной иммунной системы. А задача противораковой вакцины — повысить ее способность найти эти антигены и уничтожить их. Кто лучше всего сможет это сделать? Конечно, тот, кто знает опухоль изнутри.

Например, дендритные клетки — это популяция особых клеток иммунной системы костномозгового происхождения, играющих в ней ключевую роль. Именно они распознают чужаков, в том числе опухолевые клетки, и могут идентифицировать их антигены. Полученную информацию они передают другим клеткам иммунной системы.

Разработки таких вакцин активно ведутся в НМИЦ онкологии имени Н.Н. Блохина: дендритные клетки извлекаются из крови пациента, в лабораторных условиях их нагружают антигенами опухоли, затем через внутрикожное введение возвращают в организм, чтобы они простимулировали развитие Т-клеточного иммунного ответа и сформировали иммунологическую память.

Всего же в мире, по данным отчета Global Dendritic Cell Cancer Vaccine Market Dosage Price & Clinical Trials Outlook 2024, сейчас разрабатывается более 60 дентритноклеточных вакцин от рака, которые находятся на разных стадиях клинических исследований.

В начале этого года получила от FDA статус ускоренного рассмотрения вакцина норвежского производителя Ultimovacs для лечения редкого, но агрессивного типа рака, при котором поражаются ткани, выстилающие легкие и грудную клетку. Данная вакцина использует пептиды — специфические вещества, которые получают непосредственно из опухолевых антигенов и у которых схожая с дендритными клетками задача — передать сигналы SOS другим клеткам иммунной системы и стимулировать выработку специфичных антител. У пептидных вакцин есть ряд плюсов: они просты в синтезировании, химически стабильны и не обладают высокой канцерогенностью. Правда, и способность вызвать иммунный ответ у них тоже невысокая, поэтому их применяют вместе с помощниками-адъювантами — так называют соединения веществ, которые этот ответ позволяют усилить. Норвежская вакцина также изучается в сочетании с другими терапевтическими препаратами.

Активно изучается возможность создать вакцину из собственных опухолевых клеток пациента, которые содержат весь спектр опухолевых антигенов.

Внедрение матрицы

В 2023 году лауреатами Нобелевской премии стали биохимики Каталин Карико и Дрю Вайсман, разработавшие метод синтеза матричной РНК — основы для производства белка, на которую передается вся генетическая информация, имеющаяся в наших клетках. Еще за десять лет до пандемии COVID-19 ученые доказали, что можно модифицировать мРНК, наделив ее нужными характеристиками, например, чтобы клетки производили определенные белки-антитела к патогенам. Несколько компаний с 2010 года занимались разработкой этого метода, а в декабре 2020 года, в разгар пандемии новой коронавирусной инфекции, компании Pfizer и Moderna представили вакцины от COVID-19 на основе мРНК.

Нобелевский комитет отметил впечатляющую скорость, с которой могут быть разработаны подобные вакцины, и предсказал, что в будущем эту технологию можно будет использовать в том числе для лечения рака.

Будущее наступило стремительно. Только если мРНК в эпоху коронавируса была модифицирована для распознавания вируса, то нынешняя мРНК-вакцина запускает внутриклеточное производство закодированных белков-антигенов, вызывая иммунный ответ против раковых клеток.

Опухоль каждого человека специфична, имеет свои антигены, поэтому исследователи пытаются идти по пути создания персонализированной вакцины. Для этого у пациента в процессе операции берется кусочек опухоли, из онкоклеток выделяется ДНК и секвенируется. Так получается персонализированный препарат от рака, специфичный для конкретного пациента.

Исследования в этом направлении ведут сразу несколько научных коллективов. Это не только Moderna и Merck, которые изучают вакцину против меланомы. О начале второй фазы клинических исследований мРНК-вакцины против рака поджелудочной железы объявил Университет Цинциннати. Подобные разработки ведет и компания BioNTech совместно с Genentech.

Волшебное средство

Означает ли это, что в лечении рака произошел прорыв и наука вплотную приблизилась к победе над онкологическими заболеваниями? Об этом «Новая газета Европа» поговорила с ведущим специалистом в области иммунотерапии рака, профессором кафедры микробиологии и иммунологии Медицинской школы Университета Майами и соруководителем исследовательской программы по иммунологии опухолей Эли Гилбоа:

— Что понимать под словом «прорыв»? Для меня «прорыв» означает долгосрочную регрессию опухоли и излечение более 50% пациентов. Пока есть основания для осторожного оптимизма относительно того, что результаты исследования мРНК-вакцины будут «хорошими» или «очень хорошими», а именно, что у значительной части пациентов будет наблюдаться немедленный и долгосрочный клинический ответ.

— То есть ожидать, что эта вакцина будет широко применяться, пока преждевременно?

— Персонализированная вакцина — это всегда очень сложно и очень дорого. К тому же применение такого подхода ограничено пациентами, у которых опухоль содержит достаточное количество антигенов, чтобы воздействовать на них вакциной. А таких пациентов не так и много — не более 20−30%, их число отличается в зависимости от вида рака. Например, больных с меланомой — 40−50%, а с раком простаты — лишь 5−10%. Так что в обозримом будущем широкое применение вряд ли реально.

— А в чем основные трудности при создании вакцины?

— Ключевой компонент — это антигены, которые содержатся на поверхности опухолевых клеток. Вакцина должна заставить иммунную систему воспринимать их как чужеродные вещества и атаковать. Проблема в том, что эти опухолевые антигены — мишень не универсальная. Они неоднородны и различаются не только от пациента к пациенту, но даже у одного онкобольного в опухолевых клетках могут быть разные антигены.

Иммунную систему надо обучить, чтобы она боролась с тем, с чем нужно. Наша лаборатория как раз пытается решить эту проблему.

— Как именно?

— Мы выявляем неоантиген (антиген, образовавшийся в результате мутаций в онкоклетках, он специфичен для опухолевых клеток и отсутствует в нормальных. — Прим. ред.). Неоантигены — это своего рода «черный ящик» для иммунной системы, который нужно обнаружить и без которого вакцина не будет оптимальной. Сейчас мы разрабатываем подход, при котором «украшаем» опухоль пациента неоантигенами и таким образом делаем ее видимой для иммунной системы, а затем уже вводим вакцину. На мышах это сработало хорошо, мы получили мощный иммунный ответ без токсических проявлений. Теперь задача состоит в том, чтобы перенести этот метод на пациентов.

— Какие еще направления в иммунотерапии рака, помимо прививки, кажутся вам наиболее перспективными?

— В первую очередь это работа с неопухолевыми клетками, которые способствуют росту опухоли, — то, что специалисты называют опухолевой стромой. А также обучение терапевтических агентов попадать в цель, например в опухолевые поражения или иммунные клетки. Этот метод наименее токсичен и наиболее эффективен.

— И все же: будет когда-нибудь создано волшебное средство, излечивающее от рака?

— Не думаю, что может быть какое-то единственное средство излечения, будь то вакцинация или блокада контрольных точек. Я могу представить себе «универсальную» противораковую вакцину для всех или большинства пациентов, но в долгосрочной перспективе я не сторонник индивидуального лечения каждого человека с учетом уникальных особенностей его опухоли. Для борьбы с раком необходим комбинированный подход — коктейль «универсальных» препаратов дополняющего действия, который будет охватывать если не всех, то большинство онкологических больных. А вот комбинации этих препаратов уже могут варьироваться в зависимости от биологии, стадии и типа рака.